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ABSTRACT A simplest Padé approximant-based measurement algorithm is proposed for the phasor estimation of electrical 
signals. Initially, the samples are transformed to the z-domain, and the Padé approximant is obtained. The Padé representation 
adopts the structure of a single frequency oscillator, where the amplitude, frequency, and phase are explicitly expressed in terms 
of the samples. The proposed algorithm is tested and compared with other similar approaches using the IEEE C37.118 standard, 
demonstrating its competitiveness and compliance with all tests. The algorithm is implemented on an IoT board equipped with 
voltage and current sensors to estimate phasor characteristics at low voltage levels in electrical networks. A web interface enables 
real-time visualization of the phasor characteristics, affirming the accuracy of the proposed method. The design of the 
measurement system and the C-code of the Padé method are fully available in a repository for reproduction by others. 
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I. INTRODUCTION 

Currently, various methods have been proposed for 
estimating the phasor of electrical signals [1-10]. However, 
the Discrete Fourier Transform (DFT) method remains the 
most widely used in phasor measurement units (PMUs) due to 
its low computational complexity, which allows it to be 
implemented on any hardware. This is why most PMU 
manufacturers continue to rely on it. A key aspect of the DFT 
is its frequency resolution, as a considerable number of 
samples per cycle is necessary for accurate phasor 
determination. 

As electrical networks incorporate renewable energy 
sources, the complexity of phasor estimation becomes a 
significant challenge. The electrical signals in these networks 
exhibit characteristics such as inter-harmonics, 
intermodulation, and frequency ramps, among others. These 
complexities pose a challenge to the standard use of DFT in 
phasor estimation, as high frequency resolution or the 
implementation of digital filters prior to signal processing is 
required. This necessity compromises the computing time and 
increases the latency of the PMU. Consequently, variants like 
Interpolated DFT (IpDFT) and Enhanced Interpolated DFT 
(E-IpDFT) have been developed to estimate phasors with 
fewer samples. 

Phasor estimation time continues to be a challenge, 
necessitating algorithms that are computationally efficient and 
provide tolerable estimation errors. The number of samples 
required for accurate estimation is critical. In [1], the different 
processing stages of the PMU are comprehensively described, 
with a total latency estimated at up to 800 microseconds. 

Therefore, reducing the latency of the estimation algorithm 
remains an area of active research, prompting the development 
of new phasor estimation methods. 

Among the simplest methods for estimating amplitude and 
frequency is the one based on the Teager-Kaiser operator, 
which requires only three samples and a high sampling 
frequency. However, this method cannot estimate the phase, 
limiting its application to event detection. The 
Eigenrealization (ERA) method is another low-complexity 
approach that determines the phasor with a reduced number of 
samples (at least eight per cycle) and uses a second-order 
representation to obtain parameters, as demonstrated in [11]. 
Additionally, the Matrix Pencil (MP) method has proven to be 
another efficient technique for phasor estimation, 
characterized by its reduced complexity and quick parameter 
determination [12]. 

The motivation for our paper is to present a low-cost 
measurement system for PMU purposes. Our algorithm, based 
on the dynamic concept of phasors, is simple and easy to 
implement, requires fewer computations compared to DFT, 
meets all the steady-state and dynamic performance criteria of 
the IEEE Standard [13], performs satisfactorily during system 
faults, and exhibits a fast response time during significant 
disturbances. We have also designed a dedicated web interface 
to display signal information in real-time. The investigations 
enabled by the proposed measurement system focus on 
compliance with IEEE standards, monitoring dynamic power 
signals that change in amplitude and frequency during PMU 
testing, and estimating reference values for dynamic power 
signals. 
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II. METHODOLOGY 

Let a single frequency undamped noisy sinusoid signal of 
the form: 

                      𝑣𝑣𝑘𝑘 = 𝐴𝐴(𝑘𝑘𝑘𝑘)cos(2𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜃𝜃(𝑘𝑘𝑘𝑘)) + 𝜑𝜑(𝑘𝑘)      (1) 

where 𝑣𝑣𝑘𝑘 is the instantaneous amplitude at the time kT, A 
is the phasor amplitude, f is the frequency, θ is the phase in 
rads, and 𝑓𝑓𝑠𝑠 = 1/𝑇𝑇 the sampling frequency. Consider the 
following vector of N samples identically time spaced, which 
are acquired during a cycle of the nominal frequency 𝑓𝑓𝑜𝑜, i.e., 
during a period of T=1/(8𝑓𝑓𝑜𝑜) 

                                     𝑉𝑉 = [𝑣𝑣0 𝑣𝑣1  … 𝑣𝑣𝑁𝑁−1]                               (2) 

The z-transform of the samples gives the (-N+1)-order 
polynomial: 

          𝑉𝑉(𝑧𝑧−1) = 𝑣𝑣0 + 𝑣𝑣1𝑧𝑧−1 + 𝑣𝑣2𝑧𝑧−2 + ⋯+ 𝑣𝑣𝑁𝑁−1𝑧𝑧−𝑁𝑁+1    (3) 

Now let consider that this polynomial can be expressed by 
the L=1, M=2 Padé Approximant as [20]: 

               𝑉𝑉(𝑧𝑧−1) = 𝑣𝑣0 + 𝑣𝑣1𝑧𝑧−1 + 𝑣𝑣2𝑧𝑧−2 + ⋯+ 𝑣𝑣𝑁𝑁−1𝑧𝑧−𝑁𝑁+1

=
𝑝𝑝0 + 𝑝𝑝1𝑧𝑧−1

𝑞𝑞0 + 𝑞𝑞1𝑧𝑧−1 + 𝑞𝑞2𝑧𝑧−2
                               (4) 

where the coefficients 𝑝𝑝0, 𝑝𝑝1, 𝑞𝑞0, 𝑞𝑞1, and 𝑞𝑞2 are unknown.  
As can be seen, the above Padé approximation permits 
representing the signal samples by a two-pole transfer 
function.  To obtain the Padé coefficients, Eq. (4) is 
alternatively expressed as: 

(𝑣𝑣0 + 𝑣𝑣1𝑧𝑧−1 + ⋯+ 𝑣𝑣𝑁𝑁−1𝑧𝑧−𝑁𝑁+1)(𝑞𝑞0 + 𝑞𝑞1𝑧𝑧−1 + 𝑞𝑞2𝑧𝑧−2)     
= 𝑝𝑝0 + 𝑝𝑝1𝑧𝑧−1                                                (5) 

Making the products in Eq. (5) and grouping the terms of 
same order in z, the next two linear system of equations are 
obtained [21]: 

                     �

𝑣𝑣𝑁𝑁−3 𝑣𝑣𝑁𝑁−2 𝑣𝑣𝑁𝑁−1
⋮ ⋮ ⋮
𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
𝑣𝑣0 𝑣𝑣1 𝑣𝑣2

� �
𝑞𝑞2 
𝑞𝑞1 
𝑞𝑞0 
� = �

0
⋮
0
0

�                     (6a) 

                                �
𝑣𝑣0 𝑣𝑣1 
0   𝑣𝑣0 � �

𝑞𝑞1 
𝑞𝑞0 � = �

𝑝𝑝1 
𝑝𝑝0 �                                  (6b) 

These two linear systems can be solved in simultaneous 
form. First, if in the homogenous system in Eq. (6a) is setting 
𝑞𝑞0=1, then 𝑞𝑞1 and 𝑞𝑞2 are given by solution of Eq. (7): 

                           �

𝑣𝑣𝑁𝑁−3 𝑣𝑣𝑁𝑁−2
⋮ ⋮
𝑣𝑣1 𝑣𝑣2
𝑣𝑣0 𝑣𝑣1

� �
𝑞𝑞2 
𝑞𝑞1 � = −�

𝑣𝑣𝑁𝑁−1
⋮
𝑣𝑣3
𝑣𝑣2

�                    (7) 

Pre-multiplying both sides of Eq. (7) by the transpose of  

�

𝑣𝑣𝑁𝑁−3 𝑣𝑣𝑁𝑁−2
⋮ ⋮
𝑣𝑣1 𝑣𝑣2
𝑣𝑣0 𝑣𝑣1

� yields in 

 

�
𝑣𝑣𝑁𝑁−3 … 𝑣𝑣1 𝑣𝑣0
𝑣𝑣𝑁𝑁−2 … 𝑣𝑣2 𝑣𝑣1� �

𝑣𝑣𝑁𝑁−3 𝑣𝑣𝑁𝑁−2
⋮ ⋮
𝑣𝑣1 𝑣𝑣2
𝑣𝑣0 𝑣𝑣1

� �
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𝑞𝑞1 �           

=                               − �
𝑣𝑣𝑁𝑁−3 … 𝑣𝑣1 𝑣𝑣0
𝑣𝑣𝑁𝑁−2 … 𝑣𝑣2 𝑣𝑣1� �

𝑣𝑣𝑁𝑁−1
⋮
𝑣𝑣3
𝑣𝑣2

�                     (8) 

 

Making the products is obtained Eq. (9) 
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  (9) 

 

Solution of (9) give the q´s coefficients as: 

𝑞𝑞2 = ∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+1
𝑁𝑁−3
𝑘𝑘=0 ∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+1

𝑁𝑁−2
𝑘𝑘=1 −∑ 𝑣𝑣𝑘𝑘

2𝑁𝑁−2
𝑘𝑘=1 ∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+2

𝑁𝑁−3
𝑘𝑘=0

∑ 𝑣𝑣𝑘𝑘
2𝑁𝑁−3

𝑘𝑘=0  ∑ 𝑣𝑣𝑘𝑘
2𝑁𝑁−2

𝑘𝑘=1 −�∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+1𝑁𝑁−3
𝑘𝑘=0 �

2          (10a) 

𝑞𝑞1 = ∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+2
𝑁𝑁−3
𝑘𝑘=0 ∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+1

𝑁𝑁−3
𝑘𝑘=0 −∑ 𝑣𝑣𝑘𝑘

2𝑁𝑁−3
𝑘𝑘=0 ∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+1

𝑁𝑁−2
𝑘𝑘=1

∑ 𝑣𝑣𝑘𝑘
2𝑁𝑁−3

𝑘𝑘=0  ∑ 𝑣𝑣𝑘𝑘
2𝑁𝑁−2

𝑘𝑘=1 −(∑ 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘+1𝑁𝑁−3
𝑘𝑘=0 )2

          (10b) 

Then the solution for Eq. (6b) is straightforward and the 
coefficients 𝑝𝑝0 and 𝑝𝑝1 becomes: 

𝑝𝑝0 = 𝑣𝑣0       𝑝𝑝1 = 𝑣𝑣1 + 𝑣𝑣0𝑞𝑞1                          (11) 

Knowing the coefficients 𝑝𝑝0, 𝑝𝑝1, 𝑞𝑞0, 𝑞𝑞1 and 𝑞𝑞2, the Padé 
representation can be expressed in the pole-residue 
representation as follows [22]: 

              
𝑝𝑝0 + 𝑝𝑝1𝑧𝑧−1

𝑞𝑞0 + 𝑞𝑞1𝑧𝑧−1 + 𝑞𝑞2𝑧𝑧−2

=  
𝑟𝑟1

1 − 𝛼𝛼1𝑧𝑧−1
+

𝑟𝑟2
1 − 𝛼𝛼2𝑧𝑧−1

       (12) 

where 𝛼𝛼1 and 𝛼𝛼2 are the poles, whilst 𝑟𝑟1 and 𝑟𝑟2 are the 
residues. These terms are given by: 

     𝛼𝛼1,2 =
1
2
�−𝑞𝑞1 ± 𝑗𝑗�4𝑞𝑞2 − 𝑞𝑞12�                          (13) 

    𝑟𝑟1,2 =
1
2
�𝑝𝑝0 ± 𝑗𝑗

𝑝𝑝0𝑞𝑞1 − 2𝑝𝑝1
�4𝑞𝑞2 − 𝑞𝑞12

�                            (14) 

Since the proposed model in Eq. (12) represents an 
oscillator, the parameters of the signal can be obtained from 
Eqs. (13) and (14) as [14]: 
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              Amplitude: 𝐴𝐴 = 2‖𝑟𝑟1‖ V                                   (15a) 

             Frequency:  𝑓𝑓 = 𝑓𝑓𝑠𝑠
∡𝛼𝛼1
2𝜋𝜋

  Hz                                (15b) 

                    Phase:  𝜃𝜃 = ∡𝑟𝑟1 rad                                    (15c) 

                Damping:   𝜎𝜎 = 𝑓𝑓𝑠𝑠log𝑒𝑒‖𝛼𝛼1‖  𝑠𝑠−1                  (15d) 

Using the parameters, A and θ, we can write the phasor for 
the proposed model as follows: 

                         𝐕𝐕 = 𝐴𝐴∠𝜃𝜃 = 𝑉𝑉′𝑟𝑟 + 𝑗𝑗𝑉𝑉′𝑖𝑖                                (16) 

where 𝑋𝑋′𝑟𝑟 and 𝑋𝑋′𝑖𝑖 represent the real and imaginary part of 
the phasor, respectively.  

A. IDENTIFICATION OF FREQUENCY DEVIATIONS 

In the more general condition, the samples do not satisfy 
the ideal conditions, i.e., noise and harmonic distortion are 
present, thus under real conditions, the signal frequency is 
determined by: 

𝑓𝑓 =
𝑓𝑓𝑠𝑠
2𝜋𝜋

atan�
�4𝑞𝑞2 − 𝑞𝑞12

𝑞𝑞1
�                               (17)  

Note that the estimation of the frequency is strongly related 
with the coefficient 𝑞𝑞1, thus when a significant change of this 
coefficient occurs a deviation of the nominal frequency 
appearing. Positive (negative) value of 𝑞𝑞1 implies an increase 
(decrease) in the frequency of the signal.  

B. IDENTIFICATION OF AMPLITUDE DEVIATIONS 

The amplitude of the phasor is strictly determined by the 
magnitude of the residues 𝑟𝑟1 and 𝑟𝑟2, i.e. 

𝐴𝐴 = �𝑝𝑝02 +
(𝑝𝑝0𝑞𝑞1 − 2𝑝𝑝1)2

4𝑞𝑞2 − 𝑞𝑞12
                                   (18) 

Note that denominator 4𝑞𝑞2 − 𝑞𝑞12 can be used for 
identification of sudden variations on the signal amplitude. 
Decreasing 4𝑞𝑞2 − 𝑞𝑞12 indicate that the amplitude A is 
increasing, and vice versa. 

C. IDENTIFICATION OF PHASE DEVIATIONS 

According to the definition for the phase give in Eq. (15c), 
the angle of Eq. (14) becomes: 

       𝜃𝜃 = atan�
𝑝𝑝0𝑞𝑞1 − 2𝑝𝑝1
𝑝𝑝0�4𝑞𝑞2 − 𝑞𝑞12

�    rad                              (19)  

The phase varies continuously with the change of 
instantaneous frequency and rotates once every four new 

samples. The next expression illustrates the relationship 
between this phase and the instantaneous frequency: 

𝜃𝜃 = 𝜃𝜃 − (𝑚𝑚 − 1)
2𝜋𝜋(𝑓𝑓 − 𝑓𝑓𝑜𝑜)

𝑓𝑓𝑜𝑜
,       𝑚𝑚 = 0, 1 , …        (20) 

where m refers to the window under analysis, and 𝑓𝑓𝑜𝑜 is the 
nominal frequency. 

D. IDENTIFICATION OF DAMPING DEVIATIONS 

The damping of the signal can be calculated by assuming 
a decrease in amplitude according to its exponential nature. 

𝜎𝜎 = 𝑓𝑓𝑠𝑠log𝑒𝑒(𝑞𝑞2)   s−1                                         (21) 

Note that it depends only on the coefficient 𝑞𝑞2. This 
damping becomes zero when 𝑞𝑞2=1, whilst it is negative when 
𝑞𝑞2 is in the range 0<𝑞𝑞2<1, and positive when 𝑞𝑞2>1. 
 

III. SIMULATION RESULTS 

This section is devoted to testing the proposed algorithm 
with synthetic signals that satisfy the features mentioned in the 
IEEE Std C37.118.1-2011 [13]. 

I.e., 1. Tolerance to noise; 2. Harmonic distortion; 3. 
Interharmonic distortion; 4. Decaying harmonic and DC 
decaying offset; 5. Amplitude step response; 6. Phase step 
response; 7. Amplitude and phase modulation. 8. Frequency 
ramp response. Table I summarize the test signals used. 

 
TABLE I. SIGNALS FOR COMPLIANCE THE IEEE STD C37.118.1-2011 [13]. 

Signal1 Parameters 

𝑣𝑣(𝑘𝑘) = 𝑉𝑉𝑝𝑝cos(𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜃𝜃) + 𝜑𝜑(𝑘𝑘𝑘𝑘) 𝜑𝜑 =30 dB 

𝑣𝑣(𝑘𝑘) = 𝑉𝑉𝑝𝑝cos(𝑘𝑘𝑘𝑘𝑘𝑘) +
1

2400
𝑉𝑉𝑝𝑝cos(5𝑘𝑘𝑘𝑘𝑘𝑘) +

1
40

𝑉𝑉𝑝𝑝cos(9𝑘𝑘𝑘𝑘𝑘𝑘) +
1

600
𝑉𝑉𝑝𝑝cos(15𝑘𝑘𝑘𝑘𝑘𝑘)    

 
Harmonics of 
5th,9th, & 15th 

(THD=0.514%) 

𝑣𝑣(𝑘𝑘) = 𝑉𝑉𝑝𝑝cos(𝑘𝑘𝑘𝑘𝑘𝑘) +
1

2400
𝑉𝑉𝑝𝑝cos(1.3𝑘𝑘𝑘𝑘𝑘𝑘) +

1
40

𝑉𝑉𝑝𝑝cos(9.7𝑘𝑘𝑘𝑘𝑘𝑘) +
1

600
𝑉𝑉𝑝𝑝cos(15.2𝑘𝑘𝑘𝑘𝑘𝑘)    

 

Interharmonics of 
1.3th , 9.7th , & 

15.2th 

(TIHD=0.514%) 

𝑣𝑣(𝑘𝑘)  = 𝑉𝑉𝑝𝑝cos(𝑘𝑘𝑘𝑘𝑘𝑘) +
1

600
𝑉𝑉𝑝𝑝𝑒𝑒−0.1𝑡𝑡(1 + cos(5𝑘𝑘𝑘𝑘𝑘𝑘)) 

Decaying 
harmonic of 5th 

plus DC decaying 
offset 

𝑣𝑣(𝑘𝑘) = (1 + 𝑘𝑘𝑥𝑥𝑢𝑢(𝑘𝑘𝑘𝑘))𝑉𝑉𝑝𝑝cos(2𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) kx=0.1 

𝑣𝑣(𝑘𝑘) = 𝑉𝑉𝑝𝑝cos(𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑘𝑘𝑎𝑎𝑢𝑢(𝑘𝑘𝑘𝑘)) ka=π/18 rad 
𝑣𝑣(𝑘𝑘)
= 𝑉𝑉𝑝𝑝(1

+ 𝑘𝑘𝑥𝑥𝑢𝑢(𝑘𝑘𝑘𝑘)cos(𝑘𝑘𝜔𝜔𝑚𝑚𝑇𝑇))cos � 𝑘𝑘𝑘𝑘𝑘𝑘 +
𝑘𝑘𝑎𝑎𝑢𝑢(𝑘𝑘𝑘𝑘)cos (𝑘𝑘𝜔𝜔𝑚𝑚𝑇𝑇 − 𝜋𝜋)� 

fm=5 Hz, 
kx=ka=0.1 

𝑣𝑣(𝑘𝑘) = 𝑉𝑉𝑝𝑝cos�2𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝜋𝜋𝑅𝑅𝑓𝑓𝑘𝑘2𝑇𝑇2� Rf=1 Hz/s 
 

Note: 𝑽𝑽𝒑𝒑 = 𝟏𝟏𝟏𝟏𝟏𝟏√𝟐𝟐 𝑽𝑽,  f=60 Hz, and 𝜽𝜽 = 𝟎𝟎°.  
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The Total Vector Error (TVE), Frequency Error (FE) and 

the Rate of Change of Frequency Error (RFE) are three metrics 
used to determine the validity of the algorithm, and they are 
given by: 

TVE(𝑚𝑚)

= �
�𝑉𝑉𝑟𝑟′(𝑚𝑚) − 𝑉𝑉𝑟𝑟(𝑚𝑚)�2 + �𝑉𝑉𝑖𝑖′(𝑚𝑚) − 𝑉𝑉𝑖𝑖(𝑚𝑚)�

2

�𝑉𝑉𝑟𝑟(𝑚𝑚)�2 + �𝑉𝑉𝑖𝑖(𝑚𝑚)�2
                     (22) 

FE(𝑚𝑚) = |𝑓𝑓 − 𝑓𝑓′|                                                (23) 

RFE(𝑚𝑚) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

−
𝑑𝑑𝑓𝑓′

𝑑𝑑𝑑𝑑
                                          (24) 

where 𝑉𝑉𝑟𝑟(𝑚𝑚) and 𝑉𝑉𝑖𝑖(𝑚𝑚) are the real and imaginary part of 
the true phasor, respectively. 𝑉𝑉𝑟𝑟′(𝑚𝑚) and 𝑉𝑉𝑖𝑖′(𝑚𝑚) are the real 
and imaginary part of the computed phasor, respectively; 
moreover, 𝑓𝑓 is the true frequency and 𝑓𝑓′ is the computed 
frequency. 

The Padé method is compared with the approaches MP, 
ERA, TKO and DFT. Is important to mention that for ERA 
and DFT methods were employed eight samples, for MP four 
samples, and TKO three samples. The next results were 
obtained over 60 cycles of the fundamental frequency (60 Hz) 
and fs =480 Hz. 

A. RESULTS OF TVE 

Fig. 1 displays the TVE results, with the IEEE C37.118 
standard limit (in red). The TKO results are excluded as it 
doesn't calculate phase angle. The proposed method fully 

complies with the standard, but harmonics may raise the TVE, 
indicating the need for pre-filtering. When a phase step is 
introduced, an overshoot (over 1) occurs before stabilizing. 
Thus, the Padé method provides accurate magnitude and phase 
only under low signal distortion.  

B. RESULTS OF FE 

Fig. 2 illustrates the FE results, demonstrating that the 
proposed method complies with the IEEE C37.118 standard in 
most cases. Notable exceptions include scenarios involving 
the decaying DC offset (Fig. 2e) and amplitude and phase 
modulation (Fig. 2h), where the algorithm shows some 
deviations. These deviations are primarily attributed to the 
lower sampling rate used in the testing conditions, which 
impacts the algorithm's accuracy when handling rapidly 
changing signal dynamics. 

C. RESULTS OF RFE 

Fig. 3 shows the results for RFE error for all the signals. 
The derivate of the frequency was obtained using the forward 
numerical derivative with  ℎ = 1/60. From these results, it 
can be observed that the Padé method meets the IEEE test in 
all cases except for the interharmonic distortion (Fig. 3d), 
decaying DC offset (Fig. 3e) as well as for amplitude and 
phase modulation (Fig. 3h). These deviations are likely due to 
the method's sensitivity to rapidly changing signals or 
transient components, such as interharmonics and decaying 
DC offsets. 

 

 

Fig. 1. TVE for the signals under study: (a) Noiseless (b) Tolerance to noise (c) Harmonic distortion (d) Interharmonic distortion (e) Decaying harmonic and 
DC decaying offset (f) Amplitude step (g) Phase step (h) Amplitude and phase modulation (i) Frequency ramp response. 
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Fig 2. FE for the signals under study: (a) Noiseless (b) Tolerance to noise (c) Harmonic distortion (d) Interharmonic distortion (e) Decaying harmonic and DC 
decaying offset (f) Amplitude step (g) Phase step (h) Amplitude and phase modulation (i) Frequency ramp response. 

 

 

 

Fig. 3. RFE for the signals under study: (a) Noiseless (b) Tolerance to noise (c) Harmonic distortion (d) Interharmonic distortion (e) Decaying harmonic and 
DC decaying offset (f) Amplitude step (g) Phase step (h) Amplitude and phase modulation (i) Frequency ramp response. 

 

 

 

 

79



  

Volumen 7, No. 2, Diciembre 2024                                            ISSN: 2448 – 7775 © 2024 Identidad Energética 

M. A. Pérez et al.: A simplest Padé Approximant-Based Algorithm for Phasor 
Estimation of Electrical Signals 

 
IV. IMPLEMENTATION AND RESULTS UNDER REAL 

CONDITIONS 

To test the algorithms under realistic conditions, a 
measurement system with current and voltage sensors [15, 16] 
and a Particle® WiFi IoT board [17] was designed. This 
system, referred to as IoTBPMU (Internet of Things Based 
Phasor Measurement Unit), is shown in Fig. 4, summarizing 
its main components, wiring diagram, and final assembly. The 
design is available at [18]. 

A. WEB INTERFASE DESIGN 
Particle® boards possess their own Back-End (BE) 

allowing Over The Air (OTA) programming. This BE presents 
the variable computed by the board using the MQQT 
messaging protocol. Therefore, this variable can be easily 
recovered via the JavaScript (JS) environment or recovered by 
an IoT server such as: Thingspeak®, Ubidots®, or Node-
red®; to mention a few. Thus, with this idea, an interface for 
displaying the measurements was designed, whose general 
structure is shown in the block diagram of Fig 5. 

 
Fig. 4. The measurement system: (a) Main components, (b) System 
mounted, (c) Wiring diagram. 

 
Fig. 5. Overall structure for measurement, publishing and remote displaying 
phasor information of the signal. 

Function of the BE such as Particle.variable is efficient 
and robust for this kind of phasor monitoring application since 
its latency is one second. This function takes two parameters: 
the name of the variable that can be retrieved by the Particle 
cloud, and the name of the local variable stored/computed in 
the board. For each parameter a variable is required. 

It should be emphasized that the html programming 
language permits to develop customized interfaces to visualize 
the variables in a friendly way being the best option for the 
development here presented. Full code for the Photon board 
based on the four-samples Padé method is available at [19]. 
Using the open libraries mentioned in [20], a web interface to 
visualize the measurements was developed, that is accessed to 
the public address at [21]. 

B. RESULTS 
As a final test, the system was connected to a single phase 

of 127 VAC 60 Hz low voltage distribution network. Fig. 6 
depicts the IoTBPMU in this situation. Fig. 7 shows the results 
given for the phasor parameters along with the Padé 
coefficients. 

From Fig. 7a, the phasor parameters derived from the 
signal closely align with the expected values for this voltage 
level, confirming the accuracy of the proposed method in real-
world low-voltage applications. The frequency is determined 
with minimal error, which demonstrates the algorithm’s 
reliability in maintaining accurate measurements even in 
dynamic environments. The voltage peak is observed around 
180 V, which is consistent with typical low-voltage 
distribution network levels. The phase shows slight variations, 
as expected, since the phasor parameters are updated every 
second, reflecting the real-time nature of the system's 
measurements. From the Padé coefficient behavior, it is 
observed that (See Fig. 7b) the q1 coefficient exhibits a 
minimal variation because the frequency of the voltage is 
constant. In a similar way, the value of the q2 coefficient is 
approximately equal to unity, thus indicating that the voltage 
signal does not have damping. This suggests that the signal’s 
dynamic characteristics are well-preserved and accurately 
reflected in the computed parameters. 

 
Fig. 6. IoTBPMU device installed at 127 VAC level. 
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Fig. 7. The monitoring interface: (a) Phasor parameters, (b) Padé 
coefficients. 

V. CONCLUSIONS 

Implementing phasor estimation algorithms on IoT boards 
is typically challenging due to the complexity of the 
algorithms and the limited memory and processing capacity of 
such devices. However, this work demonstrates that the 
proposed Padé approximation-based algorithm can be easily 
implemented on IoT boards with minimal hardware resources, 
making it a cost-effective solution. 

The results obtained from synthetic signals show that the 
algorithm complies with the IEEE C37.118 standard, 
confirming its accuracy and robustness in comparison to other 
methods such as ERA and MP. Although some deviations 
were observed in the presence of distorted signals, particularly 
with harmonics and interharmonics, the results are promising 
across most test cases. This highlights the need for further 
research to enhance the algorithm’s performance under signal 
distortion, aiming to minimize TVE, FE, and RFE. 

Additionally, the IoTBPMU system design is not only 
cost-effective but also highly replicable, thanks to its minimal 
hardware requirements and the availability of open-source 
code. This makes it accessible for a wide range of applications, 
from academic research to industrial monitoring systems. The 
use of IoT-based platforms provides scalability, allowing for 
easy integration into smart grid systems and enabling real-
time phasor measurement with minimal latency.  

The full implementation, including the web interface for 
real-time monitoring, demonstrates the system's practicality in 

real-world scenarios, as evidenced by successful tests on low-
voltage distribution networks. Moving forward, increasing the 
sample rate to better handle harmonic distortions and ensuring 
the algorithm’s reliability under various grid conditions would 
be key steps toward enhancing its effectiveness. The 
simplicity of the system, combined with its ability to deliver 
accurate measurements, positions it as a viable solution for 
low-cost, real-time phasor monitoring in modern energy 
systems. 
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